
SudoGlove: Gesture-Based Hardware Control
Jeremy Blum

Electrical and Computer Engineering
jeb373@cornell.edu
Edgar Alex Garcia
Computer Science
eag57@cornell.edu

Joseph Ballerini
Electrical and Computer Engineering

jmb596@cornell.edu
Tiffany Ng

Computer Science
tyn2@cornell.edu

ABSTRACT
Humans and machines do not interface well. In an attempt
to bridge the gap between humans and the systems they
interact with, a plethora of input methods have been
devised: keyboards, mice, joysticks, game controllers, and
touch screens are just a few examples. Unfortunately, none
of these devices remove the barrier between man and
machine. With the SudoGlove control system, we aim to
remove this obstruction by allowing the user to control a
hardware device using natural gestures. The SudoGlove
takes advantage of a multitude of sensors to capture hand
movements and uses this information control a device – in
this case, a modified RC car. Testing showed that novice
users were able to wear the glove and control the car with
only a small amount of instruction. With some future
improvements, it may be possible to remove the learning
curve completely.

INTRODUCTION
The most common thing that people do when frustrated
with devices is perform hand gestures to try to show the
device what they want it to do. A controller is unnatural
and requires getting used to; body language and hand
gestures, however, are instinctual. The SudoGlove utilizes
various sensors to capture those hand gestures and interpret
them as inputs. A touch of the thumb, a waggle of the
finger, or a tilting of the hand all act as control inputs. By
utilizing the gestures that most make out of simple habit,
the hope is that users will forget the control glove is there at
all. The device seems to do what the user wants, as though
a direct line of communication exists between the user and
the hardware to be controlled.

The old way of thinking: machines are there to do the
sorts of work that users didn’t want to do, like a
dishwasher or a Roomba. The new way of thinking:
machines are here to help us do the things that we want
to do, but are not able to, like a construction yard crane.
If users could reach a level of comfort with machines, as
though using them was no more than using an extension
of their own bodies, perhaps they could get to a point
where they thought of themselves as the ones
performing the action. That level of comfort and
familiarity is not something that can be accomplished

overnight, it would take years, perhaps even
generations to reach. Though the change may seem
rather daunting, it has to start somewhere, and that’s
where the SudoGlove comes in, one of the first steps
towards superior human-machine integration.

SudoGlove aims to bridge the gap between the user and
traditional physical hardware devices. Given the high
learning curve in understanding how to use foreign
technologies, we hope to break away from conventional
control mechanisms and explore an intuitive way to
control these devices. SudoGlove will provide a tangible
interface that relies on hand gestures to wirelessly
control any device or software. By removing the
distance between the user and traditional hardware
devices, our goal is for SudoGlove to feel more like an
extension of the body as opposed to an external
machine.

The goal of this project is to capture simple hand
gestures from the SudoGlove and use that input to
wirelessly control a modified RC car. Controlled
variables include speed, steering, lights and sounds
using a combination of flex, force, vibration, and
gyroscopic sensors. Multiple variables are controlled
simultaneously as SudoGlove outputs a constant control
signal.

The secondary goal of this project is to reach a level of
comfort and precision with SudoGlove currently held by
present day controllers. This is an important goal to
achieve because if SudoGlove cannot perform at least as
well as current controllers, it will be ignored as people
will favor the more efficient option.
RELATED WORK
Relatively recent developments in the field of glove-based
input include the BarrettHand [1], a wired glove that can
control hardware devices, which is a key feature in our
design, though we improved upon it with wireless control to
provide free range of motion. The Peregrine Gaming Glove
[2] provides software calibration, but has no support for
macros and no support for multiple simultaneous key
presses, which our prototype handles without trouble. The
Reusch

 “Sonic Control” Glove [3] includes nice on-glove displays
of volume and bass/treble levels, but is limited to
controlling only the iPod, requires the user to press buttons
on the glove, and does not sense gestures or pinches. Our
prototype handles multiple different gestures and inputs and
has an on-board LED array for displaying calibration
information and visual feedback. We built a glove whose
inputs are general enough to be used to control various
devices and applications. Perhaps the model closest to our
vision is the PowerGlove Remake [4,5] (Figure 1), which
has wireless control, open Arduino architecture, and the
ability to map input to multiple devices. Unfortunately,
even this notable glove has its limitations and still requires
deliberate button presses for its input, which is not the case
for our glove. The most recent development is the G-Speak
glove input system [6] that provides impressive gesture
control, but also does not map to a hardware device and
requires external sensors, limiting the range in which the
user can roam and still provide input to the system. Our
system can be used without external sensors and only
requires the glove to be within the range of wireless
communication with the hardware device. The G-Speak
system seems to be highly intuitive though, an aspect that
we strived to include and improve upon in our system by
using gestures that do not require line of sight with the
slave device but instead are simple and detached enough to
be done behind your back. This control scheme is similar
to that of the gyroscopic Loop Pointer [7] from Hillcrest
Labs, which can be controlled from any hand position
without pointing at the screen.

DESIGN DESCRIPTION

Components
Our prototype can be described in three parts: the glove, the
controller, and the slave device (an RC car in this scenario).

The Glove
The glove is fitted with a flex sensor, 2 force sensors, a
vibration sensor, a 2D gyroscope, a small protoboard, 3
LEDs, and a connector for the 12-conductor wire that leads
to the control unit. Each sensor is carefully sewn into the
glove using double stitching to ensure durability. All
contacts are all soldered and wrapped in heatshrink tubing
to avoid potential shorts. In testing, it was found that the
flex sensor was very fragile at its bend joint (near the solder
contacts), so this part of the flex sensor was wrapped in
heatshrink tubing to prevent it from flexing and undergoing
undue stress. The force sensors and flex sensors are sewn
directly to the tips of the fingers, but are otherwise only
held in place by thread wrapping around their bodies. This
permits the sensors to slide up and down on the fingers
instead of getting bunched up when the user’s hand is
clenched. The gyroscope is sewn to the wrist, adjacent to
the protoboard which accepts connections from all the
sensors and the cable from the control unit. Three LEDs on
the protoboard are configured to inform the user of the
position currently detected by the gyroscope (Figure 2).

The Control Unit
The control unit contains an Arduino Mega, a prototyping
shield, an XBee wireless unit, and a 9V battery. The
components are housed in a laser-cut acrylic belt holster
(Figure 3). The base of the container is glued together, and
the top can be screwed on. Thermoplastic-molded nuts are
inserted into the container base so the top can be screwed
and unscrewed easily. An illuminated power switch is
located on the side of the box, and will blink when battery
power is running low. Located next to the switch is a
connector for the glove. The control unit’s prototyping
shield accepts connections to and from the glove and holds
voltage divider circuits for the sensors. The appropriate
resistor values were determined by testing sensor resolution
with various values.

Figure 1: The Original Powerglove Advertisement

Figure 2: SudoGlove Gyroscope, LEDs, and Flex Sensor

Figure 3: Control Unit Belt Holster

The Modified RC Car
The car is an RC car with its inner circuitry gutted and
replaced with an Arduino mini, H-bridge controlled motors,
SOMO audio board and speaker, blue/red/white LEDs, and
an XBee module (Figure 4). The car’s fake headlights were
replaced with white LEDs, and 4 holes were drilled in the
top of the car to house 4 blue and red LEDs to act as siren
lights. A speaker is screwed to the rear roof of the car, and
a radial pattern of holes was cut to allow sounds to be heard
clearly. An H-Bridge allows the arduino to control the
acceleration and turning motors which were already
mounted in the chassis. The car’s original 6V battery
compartment (4x AA batteries) is wired into the control
board. The arduino regulates this to 5V for use with the H-
Bridge, and a separate 3.3V regulator is used to supply
power to the XBee and SOMO audio module. All of the
new circuitry is concealed by the car’s original plastic
casing.

Features
Motion Capture

The glove itself is nothing more than a Reebok brand
neoprene glove bought at a sporting goods store. When
fitted with all of its sensors, though, a sophisticated hand-
gesture capture device is created. The flex sensor is sewn
into the back of the index finger because the index finger is
easily bent independent of other fingers, the force sensors
are sewn to the tips of the ring and pinky fingers because
they are easily pressed with the thumb, the vibration sensor
is sewn into the palm to detect clapping, and the 2D
gyroscope is sewn into the wrist because that is the part of
the hand that rotates. In our first design iteration we
attempted to use conductive thread to connect the sensors to
the Arduino mega, but that approach ultimately failed as the
thread frayed too easily. As a result, we switched to 22-
guage stranded wires and sewed the sensors in with
standard thread. With the combined data of these sensors, a
fairly detailed motion can be extrapolated. The
performance of the motion capture is rated based on ease of

use, the natural feeling of the necessary motions, and the
recorded sensor readings. The sensor readings were
mapped to cover the entire range of motion values to ensure
the highest resolution possible. Testing showed that force
sensor data was prone to noise; this was compensated for by
taking a time-rectified average of these inputs and using
that value. “Crosstalk” between sensors was rectified by
calculating mathematical models for this noise and using
them in the code to reject interference data. For example,
the following code was used to eliminate crosstalk from the
right force ring (RFR) sensor on the right force pinky (RFP)
sensor: if(RFR>0) RFP=RFP-RFR/5. With all of
these compensations in place the SudoGlove’s motion
capture is accurate and reliable.

Wireless Communication
The Arduino mega communicates wirelessly with the
Arduino mini via two XBee modules on the same Personal
Area Network (PAN). The performance of the wireless
communication was evaluated based on how well the car
would respond to wireless commands verses how it
responded to commands sent directly over USB. Originally
wireless communication was plagued by garbled commands
and noise. This was corrected by modeling the wireless
communication after the wireless communication used in
the Etch-A-Sketch project. The Arduino mini sends out a
specific char ‘a’ when it is ready to start receiving data
from the Arduino mega; the Arduino mega reads this char
and sends out a packet of numbers preceded by another
specific char ‘.’ . When the Arduino mini reads a period, it
knows that the Arduino mega sent it a packet of numbers
and reads it. After reading the packet and doing whatever
the data told it to do, the Arduino mini sends out another
char ‘a’. Once the special characters were used, wireless
communication preformed as well as the USB
communication and was deemed successful.

Figure 4: Inside the RC Car

Sensor X Gyro Y Gyro Index Flex Ring Force Pinky Force Vibration

Senses Wrist Up/Down Wrist Tilt Finger Flexing Ring Finger
Pressure

Pinky Finger
Pressure

Clapping

Filters Averaged
Acceleration Values

Integrated, Averaged,
Filtered Spatial Position

Mapped Analog
Values

Averaging Cross-Talk
Filter, Averaging

Averaging

Data Range 000 - 255 000, 127, 255 (Digital
Turning)

000 - 255 000 - 255 000 - 255 000 - 255

Controls N/A Turning Acceleration Forward/
Reverse

Lights, Sirens,
Sounds

Car Horn

Controlling a Hardware Device
The glove component communicates with the RC car via a
wireless XBee chip connected to the car’s control board.
The car interprets commands issued by the glove sent in the
form of a period followed by 18 digits. When received by
the Arduino, the period signals it is ready to receive a set of
commands. The 18-digit command is broken down into six
3-digit chunks that each correspond to an aspect of the car
to control. For instance, the second three digits represent an
integer from 0-255 specifying what direction the car will
steer in (i.e. direction of the front wheels): 000 = Left, 127
= Straight, 255 = Right. The complete 6 sets of commands
sent to the car define: steering, speed, headlights, siren
lights, siren sounds, and the horn (Table 1).

The program loaded onto the car’s Arduino mini can then
receive these numeric commands and map them onto the
various components of the car’s circuit, controlling the
front and back motors, LEDs, and speakers. The car’s
circuitry is based on an Arduino mini connected to the H-
bridge, which allows us to easily control the steering and
direction of the wheels’ motors all at once. We connected
the H-bridge to the microcontroller according to its
schematic, which includes a 10K-ohm resistor to the
Arduino and an array of diodes between the connection to
the two front and back motors. We used two white LEDs
for the headlights, connected to the board with 220-ohm
resistors, two pairs of LEDs (a pair consisting of one red
and one blue) with 220-ohm resistors that will alternate in a
blinking pattern for the siren lights, and a speaker
connected to the SOMO chip on the breadboard that will
switch between being used for both the siren sound and the
horn.

The performance of the control was evaluated by how the
car responded to given commands. Most errors in control
were software based and required simple debugging of the
code. The 18-digit command itself was verified by
allowing a third XBee connected to a computer to listen in
on the communication. When we first wired up the H-
bridge, we connected the motor directly without any diodes.
The absence of diodes led to half-hearted turns and choppy
motion, both of which were rectified by implementing the
complex diode array. After the debugging of the code and

adding the diode array, the car followed all commands
given by SudoGlove correctly.

FUTURE WORK
Given what we learned during the making of this project,
we have a few ideas on how we would like to improve upon
our design for future iterations. First off, a word on
aesthetics: we would like to integrate the sensors into the
fabric of the glove to achieve a cleaner look, sleeve the wire
bus between the glove and control unit, and attach
armbands of some sort to the wire bus so it can be worn
more easily while providing strain relief. Second, a pair of
gloves would make for more and better control options,
different gestures, and advanced features. We learned that
flex sensors are indispensible in order to take full advantage
of the dexterity of a human hand. Future iterations might
have many more flex sensors and less force sensors.
Another lesson we learned was to take full advantage of the
capabilities of your hardware. We were not using our
wireless modules at full speed, which we believe was
affecting the response time of the system. Higher quality
sensors would also improve the sensitivity and response of
the system. The ability to customize the interface to control
different devices and applications was a key motivation for
our project. In the future a software interface for selecting
which gestures will control which capabilities on the
controlled device or application will make it easy for the
user to find a control scheme to fit their preferences. Of
course, the control unit cannot simply forget these settings
when it is powered off, so the ability to maintain
configuration options even after the system is powered off
is a must. This could be achieved by writing the
configuration to the EEPROM on the Arduino Mega or to
an SD card.

CONCLUSION
The SudoGlove system was developed to demonstrate the
possibility of intuitive, simple, glove-based input general
enough to be extended to other applications, including
hardware and software. Based on how well the system
controlled the RC car, we are convinced the SudoGlove is a
viable user interface with untapped capabilities. Though
only a prototype, further development would undoubtedly
produce an even more accurate and intuitive design. The
SudoGlove has the potential to start bridging the large gap
between human ideas and machine responses.

Table 1: Control Scheme and Sensor Filtering

REFERENCES
1. Barrett Hand Glove Control.

http://www.youtube.com/watch?v=Ywo6WR9NUpE
2. Peregrine Gaming Glove.

.

http://www.engadget.com/2009/12/18/peregrine-
gaming-glove-modeled-calibrated-and-demoed-on-
video/.

3. Sonic Control Glove.
http://fibretronic.com/news/Reusch%20Sonic%20Contr
ol%20Glove.

4. Nintendo Power Glove
http://en.wikipedia.org/wiki/Power_Glove.

5. 20th Anniversary Power Glove Remake.
http://www.instructables.com/id/Power-Glove-20th-
Anniversary-Edition/.

6. Oblong Gesture Computing
http://www.readwriteweb.com/archives/minority_report
_in_your_living_room_gestural_inter.php.

7. Hillcrest Labs Loop Pointer
http://hillcrestlabs.com/products/loop.php

APPENDICES

Photo Gallery
A photo gallery of the project is available at Jeremy Blum’s Blog: http://jeremyblum.com/2010/05/09/sudoglove/

Video Demonstration
You can view a video demonstration of this project at the following YouTube link:
http://www.youtube.com/watch?v=RnWPoaLU1i4

SudoGlove Controller Circuit

http://www.youtube.com/watch?v=Ywo6WR9NUpE�
http://www.engadget.com/2009/12/18/peregrine-gaming-glove-modeled-calibrated-and-demoed-on-video/�
http://www.engadget.com/2009/12/18/peregrine-gaming-glove-modeled-calibrated-and-demoed-on-video/�
http://www.engadget.com/2009/12/18/peregrine-gaming-glove-modeled-calibrated-and-demoed-on-video/�
http://fibretronic.com/news/Reusch%20Sonic%20Control%20Glove�
http://fibretronic.com/news/Reusch%20Sonic%20Control%20Glove�
http://en.wikipedia.org/wiki/Power_Glove�
http://www.instructables.com/id/Power-Glove-20th-Anniversary-Edition/�
http://www.instructables.com/id/Power-Glove-20th-Anniversary-Edition/�
http://www.readwriteweb.com/archives/minority_report_in_your_living_room_gestural_inter.php�
http://www.readwriteweb.com/archives/minority_report_in_your_living_room_gestural_inter.php�
http://hillcrestlabs.com/products/loop.php�
http://jeremyblum.com/2010/05/09/sudoglove/�
http://www.youtube.com/watch?v=RnWPoaLU1i4�

RC Car Schematic

SudoGlove Control Unit Arduino Code
/***
**** SUDOGLOVE CONTROLLER PROGRAM **
**** INFO 4320 Final Project, Spring 2010 **
**** Cornell University **
**** Copyright: Jeremy Blum, Jow Ballerini, Alex Garcia, and Tiffany Ng **
**/

//Power Switch
const int pwr_led = 42;

//OPERATIONAL MODE
//When debug mode is set to true, pretty values will be printed to the terminal window (for u
se in USB mode)
//When debug mode is set to false, values are sent wirelessly to car in proper format (for us
e in XBEE mode)
const boolean debug = false; //False for normal operation
const boolean debug_map = true; //false to display raw sensor values (0-1024), true to
display mapped sensor values (0-255) - only valid in debug mode.

//Turning Integration variables
int old_state_turn = 2; //1 is hand left, 2 is middle, 3 is hand right
int new_state_turn = 2;
int angle = 127; //Start in the middle (assumes calibration was sucessful)

//Gyroscope Bias
//Higher values means it it will take more umph to move to that position.
//Raise values if it tends to always go in that direction.
const int left_bias = 17;
const int right_bias = 7;

//Define the analog input pins for our sensors

const int right_gyro_4Y = 9;
const int right_gyro_4X = 10;
const int right_flex_index = 14;
const int right_flex_middle = 15; //NOTE: not in use
const int right_force_ring = 12;
const int right_force_pinky = 13;
const int right_vibra_palm = 11;
//Define the Analog Ouput Pins (PWM pins) (LEDs)
const int right_LED_green = 8;
const int right_LED_red = 9;
const int right_LED_yellow = 10;

//Define Variables for holding sensor data
int rgy; //Right Gyro Y
int rgx; //Right Gyro X
int rfi; //Right Flex Index
int rfm; //Right Flex Middle
int rfr; //Right Force Ring
int rfp; //Right Force Pinky
int rvp; //Right Vibra Palm

//Equilibrium Values
//NOTE: Gyro Values are set in calibration stage, but declared as globals now.
 int rgy_mid;
 int rgy_low;
 int rgy_high;
 int rgx_mid;
 int rgx_low;
 int rgx_high;
const int rfi_straight = 525;
const int rfi_curled = 730;
const int rfr_low = 1023;
const int rfr_high = 600;
const int rfp_low = 1023;
const int rfp_high = 700;
const int rvp_low = 1023;
const int rvp_high = 400;

//This function will format and print number to be sent over XBee
void print_pretty(int val)
{
 int new_val;
 //All Numbers must range from zero to 255.
 if (val<0) new_val = 0;
 else if (val>255) new_val = 255;
 else new_val = val;
 //Add Leading zeros
 if (new_val < 10)
 {
 Serial.print(0);
 Serial.print(0);
 Serial.print(new_val);
 }
 else if (new_val >= 10 && new_val <100)
 {
 Serial.print(0);
 Serial.print(new_val);
 }
 else Serial.print(new_val);
}

void calibrate_gyro(int y_axis_pin, int x_axis_pin)
{
 //If we are talking to the gyroscope sensors, then equilibrium value is at the middle.
 //We will collect 20 data samples in 2 seconds

 //Do some dummy reads first. This seems to be necessary.
 analogRead(x_axis_pin);
 delay (500);
 analogRead(y_axis_pin);
 delay(500);

 //Read Values and do some average to determine sensor sensor calibration states
 int sumy = 0;
 int sumx = 0;
 for (int i = 0; i<20; i++)
 {
 sumy = sumy + analogRead(y_axis_pin);
 sumx = sumx + analogRead(x_axis_pin);
 delay (100);
 }
 double avgy = round(sumy/20);
 double avgx = round(sumx/20);

 rgy_mid = avgy;
 rgy_low = 0;
 rgy_high = avgy*2;
 rgx_mid = avgx;
 rgx_low = 0;
 rgx_high = avgx*2;
}

void setup()
{
 //Set Pin Directions
 pinMode (pwr_led, OUTPUT);
 pinMode (right_gyro_4Y, INPUT);
 pinMode (right_gyro_4X, INPUT);
 pinMode (right_flex_index, INPUT);
 pinMode (right_flex_middle, INPUT);
 pinMode (right_force_ring, INPUT);
 pinMode (right_force_pinky, INPUT);
 pinMode (right_vibra_palm, INPUT);
 pinMode (right_LED_green, OUTPUT);
 pinMode (right_LED_red, OUTPUT);
 pinMode (right_LED_yellow, OUTPUT);

 //Turn on Pwr LED
 digitalWrite(pwr_led, HIGH);

 //Setup Serial Connection to Computer and Xbee
 Serial.begin (9600);

 //PERFORM 1-TIME SENSOR CALIBRATION
 //Warn the User that synchronization will occur by counting down with LEDs.
 digitalWrite(right_LED_red, HIGH);
 delay(500);
 digitalWrite(right_LED_red, LOW);
 digitalWrite(right_LED_yellow,HIGH);
 delay(500);
 digitalWrite(right_LED_yellow,LOW);
 digitalWrite(right_LED_green,HIGH);
 delay(500);
 digitalWrite(right_LED_yellow,HIGH);
 digitalWrite(right_LED_red, HIGH);
 //The User has been warned, and we will now start calibrating
 calibrate_gyro (right_gyro_4Y, right_gyro_4X);
 //Calibration Has Finished. Turn off Warning LEDs, and prepare for normal operation
 digitalWrite(right_LED_green, LOW);
 delay(500);

 digitalWrite(right_LED_yellow, LOW);
 delay(500);
 digitalWrite(right_LED_red, LOW);
 delay(500);
 //Go!

}

void loop()
{
 //Read 3.3V Sensor Values
 analogReference(EXTERNAL); //3.3V Reference
 rgy = analogRead(right_gyro_4Y); //Right Gyroscope Y Axis
 rgx = analogRead(right_gyro_4X); //Right Gyroscope X Axis
 //Read 5V Sensor Values
 analogReference(DEFAULT); //5V Reference
 rfi = analogRead(right_flex_index); //Right Flex Index
 rfm = analogRead(right_flex_middle); //Right Flex Middle
 //NOTE: Force Sensors have some noise problems, so we will average them
 int sumr = 0;
 int sump = 0;
 for (int i=0; i<10; i++)
 {
 sumr = sumr + analogRead(right_force_ring); //Right Force Ring
 sump = sump + analogRead(right_force_pinky); //Right Force Pinky
 }
 rfr = round(sumr/10);//Right Force Ring
 rfp = round(sump/10);//Right Force Pinky
 //NOTE: vibration sensors have some noise problems, so we will average them
 int sumv = 0;
 for (int i=0; i<5; i++)
 {
 sumv = sumv + analogRead(right_vibra_palm); //Right Vibra Palm
 }
 rvp = round(sumv/5); //Right Vibra Palm

 //Map Values for Transmission
 int RGX = map(rgx, rgx_low, rgx_high, 0, 255);
 int RGY = map(rgy, rgy_low, rgy_high, 0, 255);
 int RFI = map(rfi, rfi_straight, rfi_curled, 0, 255);
 int RFR = map(rfr, rfr_low, rfr_high, 0, 255);
 int RFP = map(rfp, rfp_low, rfp_high, 0, 255);
 int RVP = map(rvp, rvp_low, rvp_high, 0, 255);

 //Corrects for a Sensor Crossover Problem
 if(RFR > 0) RFP = RFP - RFR/5;
 //if(RGY > (127+20) || RGY < (127-20)) RVP = RVP - RGY/5;
 //else if(RGX > (127+20) || RGX < (127-20)) RVP = RVP - RGX/5;

 //We integrate data from the Y acceleration to determine a rough position vector
 //What is the current Turning State?
 if (RGY > (127-left_bias) && RGY < (127+right_bias) && old_state_turn == 1)
new_state_turn = 1;
 else if (RGY > (127-left_bias) && RGY < (127+right_bias) && old_state_turn == 2)
new_state_turn = 2;
 else if (RGY > (127-left_bias) && RGY < (127+right_bias) && old_state_turn == 3)
new_state_turn = 3;

 else if (RGY >= (127+right_bias) && old_state_turn == 1) new_state_turn = 2;
 else if (RGY >= (127+right_bias) && old_state_turn == 2) new_state_turn = 3;
 else if (RGY >= (127+right_bias) && old_state_turn == 3) new_state_turn = 3;

 else if (RGY <= (127-left_bias) && old_state_turn == 1) new_state_turn = 1;
 else if (RGY <= (127-left_bias) && old_state_turn == 2) new_state_turn = 1;
 else if (RGY <= (127-left_bias) && old_state_turn == 3) new_state_turn = 2;

 else new_state_turn = 2;

 //Perform Turn Angle Integration
 if (new_state_turn == 1) //Glove is left
 {
 angle = 0;
 digitalWrite(right_LED_red, LOW);
 digitalWrite(right_LED_green, HIGH);
 digitalWrite(right_LED_yellow, LOW);
 }
 else if (new_state_turn == 2) //Glove is in middle
 {
 angle = 127;
 digitalWrite(right_LED_red, HIGH);
 digitalWrite(right_LED_green, LOW);
 digitalWrite(right_LED_yellow, LOW);
 }
 else //Glove is right
 {
 angle = 255;
 digitalWrite(right_LED_red, LOW);
 digitalWrite(right_LED_green, LOW);
 digitalWrite(right_LED_yellow, HIGH);
 }

 //Be Ready to get the new state in the next iteration of the loop
 old_state_turn = new_state_turn;

 //SEND OUT DATA...
 //Send data over XBee
 if (debug == false)
 {
 Serial.print('.');
 print_pretty(RGX);
 print_pretty(angle);
 print_pretty(RFI);
 print_pretty(RFR);
 print_pretty(RFP);
 print_pretty(RVP);
 while (Serial.read() != 'a');
 }
 //Print Mapped Debug Info
 else if (debug == true && debug_map == true)
 {
 print_pretty(RGX);
 Serial.print(" ");
 print_pretty(angle);
 Serial.print(" ");
 print_pretty(RFI);
 Serial.print(" ");
 print_pretty(RFR);
 Serial.print(" ");
 print_pretty(RFP);
 Serial.print(" ");
 print_pretty(RVP);
 Serial.println();
 delay(200);
 }
 //Print Raw debug info
 else if (debug == true && debug_map == false)
 {
 Serial.print(rgx);
 Serial.print(" ");
 Serial.print(rgy);

 Serial.print(" ");
 Serial.print(rfi);
 Serial.print(" ");
 Serial.print(rfr);
 Serial.print(" ");
 Serial.print(rfp);
 Serial.print(" ");
 Serial.print(rvp);
 Serial.println();
 delay(800);
 }
}

RC Car Arduino Code
/***
**** SUDOGLOVE RC CAR PROGRAM **
**** INFO 4320 Final Project, Spring 2010 **
**** Cornell University **
**** Copyright: Jeremy Blum, Jow Ballerini, Alex Garcia, and Tiffany Ng **
**/

unsigned long millis(void);

//H-Bridge Pins
const int mPin1 = 10;
const int mPin2 = 11;
const int mPin3 = 5;
const int mPin4 = 6;

//SOMO pins and constants
const int clk = 14;
const int data = 15;
const int busy = 16;
const unsigned int VOLUME_0 = 0xFFF0;
const unsigned int VOLUME_1 = 0xFFF1;
const unsigned int VOLUME_2 = 0xFFF2;
const unsigned int VOLUME_3 = 0xFFF3;
const unsigned int VOLUME_4 = 0xFFF4;
const unsigned int VOLUME_5 = 0xFFF5;
const unsigned int VOLUME_6 = 0xFFF6;
const unsigned int VOLUME_7 = 0xFFF7;
const unsigned int PLAY_PAUSE = 0xFFFE;
const unsigned int STOP = 0xFFFF;

//Headlights Pin
const int headlight_pin = 12;

//Siren Lights Pins
const int sPin1 = 8;
const int sPin2 = 9;

//Hold Serial commands
char buffer[18]; //There are 6 3-digit commands
const int buffer_len = 18;

//State variables
boolean characterSent = false;
boolean sirenOn = false;
boolean hlightsOn = false;
boolean sounds = false;
boolean leftRight = false;
boolean soundsH = false;

//Sensor Values
int something = 0;

int accel = 0;
int turn = 0;
int sirenNLights = 0;
int honk = 0;
int reverse = 0;

//Threshold values for switching commands
const int headlightsThreshold = 30; //30
const int sirenLightsThreshold = 80; //90
const int sirenSoundThreshold = 160; //200
const int surfaceThreshold = 190; // 190 for carpet, 150 for hard surface
const int honkThreshold = 200;
const int reverseThreshold = 100;

//Clears the buffer coming in from signal
void clearBuffer(){
 for(int i = 0; i < buffer_len; i++){
 buffer[i] = 0;
 }
}

//Send command to SOMO for sounds
void sendCommand(unsigned int command) {
 // start bit
 digitalWrite(clk, LOW);
 delay(2);

 // bit15, bit14, ... bit0
 for (unsigned int mask = 0x8000; mask > 0; mask >>= 1) {
 if (command & mask) {
 digitalWrite(data, HIGH);
 }
 else {
 digitalWrite(data, LOW);
 }
 // clock low
 digitalWrite(clk, LOW);
 delayMicroseconds(200);

 // clock high
 digitalWrite(clk, HIGH);
 delayMicroseconds(200);
 }

 // stop bit
 delay(2);
}

void setup(){
// //These Pins are Outputs
 pinMode(sPin1, OUTPUT);
 pinMode(sPin2, OUTPUT);
 pinMode(clk, OUTPUT);
 pinMode(data, OUTPUT);
 pinMode(busy, INPUT);
 pinMode(headlight_pin, OUTPUT);

 Serial.begin(9600);
 clearBuffer();

 //Keep motor off on initialization
 analogWrite(mPin1, 0);
 analogWrite(mPin2, 0);
 analogWrite(mPin3, 0);
 analogWrite(mPin4, 0);

 //Set Default Values for SOMO
 digitalWrite(clk, HIGH);
 digitalWrite(data, LOW);
 sendCommand(VOLUME_4);
 delay(50);
 sendCommand(0x0002);
 delay(50);
 while(digitalRead(busy) == HIGH);
 delay(2000);
 Serial.flush();
}

void loop(){
 //Sending a character tells the glove unit to deliver more data
 if(!characterSent){
 Serial.print('a');
 characterSent = true;
 }

 //Get commands
 if(Serial.available()){
 characterSent = false;
 char check = Serial.read();

 if(check == '.')
 {
 for (int i=0; i Serial.read();
 delay(10);
 }

 //Get the data from the XBee Transmission
 char driveTrain[3] = {
 buffer[0], buffer[1], buffer[2] };
 char steering[3] = {
 buffer[3], buffer[4], buffer[5] };
 char headlights[3] = {
 buffer[6], buffer[7], buffer[8] };
 char sirenlights[3] = {
 buffer[9], buffer[10], buffer[11] };
 char sirenSounds[3] = {
 buffer[12], buffer[13], buffer[14] };
 char horn[3] = {
 buffer[15], buffer[16], buffer[17] };

 //Parse buffer into our sensor values
 something = 100*(driveTrain[0] - '0') + 10*(driveTrain[1]-'0') + (driveTrain[2]-
'0');
 turn = 100*(steering[0] - '0') + 10*(steering[1]-'0') + (steering[2]-'0');
 accel = 100*(headlights[0] - '0') + 10*(headlights[1]-'0') + (headlights[2]-
'0');
 reverse = 100*(sirenlights[0] - '0') + 10*(sirenlights[1]-'0') + (sirenlights[2]-
'0');
 sirenNLights = 100*(sirenSounds[0] - '0') + 10*(sirenSounds[1]-'0') + (sirenSounds[2]-
'0');
 honk = 100*(horn[0] - '0') + 10*(horn[1]-'0') + (horn[2]-'0');

 //Turn on headlights
 if(sirenNLights < headlightsThreshold)
 {
 hlightsOn=false;
 sirenOn=false;
 sounds=false;

 }
 else if((sirenNLights >= headlightsThreshold) && (sirenNLights < sirenLightsThreshold))
 {
 hlightsOn = true;
 sirenOn=false;
 sounds = false;
 }
 //turn on siren lights by pressing pinky twice as hard
 else if((sirenNLights >= sirenLightsThreshold) && (sirenNLights <
sirenSoundThreshold))
 {
 hlightsOn=true;
 sirenOn=true;
 sounds = false;
 }
 //turn on siren sounds by pressing pinky three times as hard
 else if(sirenNLights >= sirenSoundThreshold)
 {
 hlightsOn=true;
 sirenOn=true;
 sounds=true;
 }

 // Control Headlights
 if(hlightsOn){
 digitalWrite(headlight_pin, HIGH);
 }else{
 digitalWrite(headlight_pin, LOW);
 }

 // Control Siren Lights
 if(sirenOn) {
 if(leftRight) {
 digitalWrite(sPin1, HIGH);
 digitalWrite(sPin2, LOW);
 }
 else {
 digitalWrite(sPin1, LOW);
 digitalWrite(sPin2, HIGH);
 }

 leftRight = !leftRight;
 } else if(!sirenOn){
 digitalWrite(sPin1, LOW);
 digitalWrite(sPin2, LOW);
 }

 //Acceleration Commands
 if(accel < surfaceThreshold){
 analogWrite(mPin1, 0);
 analogWrite(mPin2, 0);
 }else{
 if(reverse > reverseThreshold){
 analogWrite(mPin1, 0);
 analogWrite(mPin2, accel);
 } else {
 analogWrite(mPin1, accel);
 analogWrite(mPin2, 0);
 }
 }

 //Turning Commands

 if(turn <= 77){
 analogWrite(mPin3, 255);
 analogWrite(mPin4, 0);
 }
 else if(turn >= 178){
 analogWrite(mPin3, 0);
 analogWrite(mPin4, 255);
 }
 else {//if(turn_digital == 1)
 analogWrite(mPin3, 0);
 analogWrite(mPin4, 0);
 }

 // Control Honk Sound
 if(honk >= honkThreshold)
 {
 soundsH = true;
 }
 else if(honk < honkThreshold && digitalRead(busy)==LOW) //don't overlap
 {
 soundsH=false;
 }

 // Control Sounds
 if(sounds && digitalRead(busy) == LOW) //play siren sound
 {
 sendCommand(0x0000);
 delay(50);
 }
 else if((soundsH) && (digitalRead(busy)==LOW)) //play horn
 {
 sendCommand(0x0001);
 delay(50);
 }
 else if(!sounds && !soundsH){
 sendCommand(STOP);
 delay(50);
 }
 }
 }
}

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	DESIGN DESCRIPTION
	Components

	/
	The Glove
	The Control Unit
	The Modified RC Car
	Features
	Wireless Communication
	Controlling a Hardware Device

	FUTURE WORK
	CONCLUSION
	REFERENCES
	APPENDICES
	Photo Gallery
	Video Demonstration
	SudoGlove Controller Circuit
	RC Car Schematic
	SudoGlove Control Unit Arduino Code
	RC Car Arduino Code

